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Abstract
Introduction: Occupational injuries as a workforce’s health problem are very important in large-scale
workplaces. Analysis and modeling the health-threatening factors are good ways to promote the workforce’s
health and a fundamental step in developing health programs. The purpose of this study was ANN modeling of
the severity of occupational injuries to determine the health-threatening factors and to introduce a model to
predict the severity of occupational injuries.
Methods: This analytical chain study was conducted in 10 large construction industries during a 10-year period
(2005-2014). Nine hundred sixty occupational injuries were analyzed and modeled based on feature weighting by
the rough set theory and artificial neural networks (ANNs). Two analytical software programs, i.e., RSES and
MATLAB 2014 were used in the study.
Results: The severity of occupational injuries was calculated as 557.47 ± 397.87 days. The findings of both
models showed that the injuries' severity as a health problem resulted in various factors, including individual,
organizational, health and safety (H&S) training, and risk management factors, which could be considered as
causal and predictive factors of accident severity rate (ASR).
Conclusion: The results indicated that ANNs were a reliable tool that can be used to analyze and model the
severity of occupational injuries as one of the important health problems in large-scale workplaces. Additionally,
the combination of rough set and ANNs is a good and proper chain approach to modeling the factors that threaten
the health of workforces and other H&S problems.
Keywords: workforce’s health, occupational injury, accident severity rate (ASR), artificial neural networks
(ANN), rough set theory

1. Introduction
Despite the extensive efforts to reduce occupational injuries, the World Health Organization (WHO) has introduced
it as a public health epidemic (1-2). In addition, the International Labor Organization (ILO) stated that, annually,
268 million occupational accidents cause harm and injuries in workplaces and that the occupational injuries resulted
in more than 2.2 million deaths among the workforce (1, 3). Developing and implementing health and safety (H&S)
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programs have positive effects on people’s, society’s, and economic welfares, and they result in preventive H&S and
control programs, thereby improving the health of the workforce. H&S planning requires proper and applicable data
about the problems and the threatening factors that affect health. As is well known, occupational injuries are one of
the most important health threats and problems in large-scale workplaces (4-6). The accident severity rate (ASR) is
one of the significant indices in the analysis and modeling of the severity of occupational injuries (7, 8). Therefore,
analysis and modeling of this index using practical modeling techniques can provide accurate identification of
health-threatening factors, as well as help managers and engineers to design and develop various H&S programs for
the prevention and reduction of occupational injuries (4, 9).

Some studies have shown that the analysis findings of occupational injuries were reliable and valid, making them
useful as a basis for developing health management programs (4, 9, 10). Use of fitting methods is a good approach
to analyze and modeling the severity of occupational injuries and health-threatening factors. Linear regression,
generalized linear models, regression analysis, and artificial neural networks (ANNs) are examples of modeling
techniques that can be used to model health problems, such as occupational injuries (11-13). The comparison of the
fitting methods in order to select the optimum technique for the function approximation of ASR in part one of this
study indicated that ANNs had the highest correlation coefficient (R = 0.968) and the lowest relative error (re =
0.063); thus, they were deemed to be the best fitting method for analyzing and modeling the severity of occupational
injuries. Therefore, artificial neural networks (ANNs), as a best and optimum fitting technique, are one of the most
significant, reliable, and practical tools used to model the factors that cause occupational injuries and to predict the
severity of injuries (11-13). The results of the Carrillo-Castrillo research team confirmed that ANNs are useful in
estimating occupational accident risk factors (12). In addition, Moghaddam et al. showed that ANNs can be used to
predict the severity of occupational injuries (13). Therefore, in this study, we aimed to determine the causal factors
of occupational injuries and further introduce a model for the prediction and reduction of the severity of
occupational injuries and to improve the health of workforces based on a chain approach using rough set theory and
artificial neural networks modeling

2. Material and Methods
2.1. Setting
This analytical chain study was carried out in 10 Iranian large construction industries from 2005 to 2014. In this
study, 980 people who were injured in occupational accidents were analyzed and modeled. The following steps were
employed to complete the study.

2.2. Data Collection
Data were collected from accident investigation forms, interviews (injured workforce, witnesses, supervisors,
managers, and other personnel), documents of H&S training system and risk management. All registered documents
of occupational injuries were peer reviewed over the 10-year period. Occupational injuries with incomplete data
were excluded from the study. A total of 980 occupational accidents that resulted in injury were selected for the
study. The studied and assessed factors included individual factors (i.e., average age, work experience, educational
level, and marital status), organizational factors or characteristics of the workplace management and structure (i.e.,
job title, activity types during accidents, the number of workers, existing time pressure, and types of employment,
including formal and contractors), H&S training factors (, i.e., pre-employment training, periodic training, past
injury training, training about personal protective equipment (PPE) and housekeeping, quantity and quality of
training), and H&S risk management factors (RMF: hazard identification (HAZID), periodic risk assessment,
accident investigation, risk control measures, such as PPE, implementing tool box meeting (TBM), and
housekeeping, applying H&S checklists, establishment of incident reports, and H&S audits). Furthermore, the
severity of occupational injuries was analyzed based on the accident severity rate (ASR) (14). ASR-OSHA was
calculated as follows (15): ASR = (total number of lost work days due to occupational accidents and injures ×
200,000/total number of hours worked).

2.3. Feature Weighting
Due to the fact that each of the factors had a specific weight and effect on the severity of occupational injuries,
therefore, determining the weight of each of these factors on ASR is important. Therefore, rough set theory was
applied to determine the weight of each of these factors. Rough set theory is known as a new classification method
in data mining and a mathematical tool for exploring data patterns (16). Moreover, it copes with separate factors
through multi-level categories. What makes this method a good choice for feature selection is its ability to use an
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explicit mathematical manner to ascertain latent patterns of data, redundancies, and dependencies between data
features (17). In order to determine the weight of factors, rough set exploration system (RSES Software) was applied
(18).

2.4. Artificial Neural Networks (ANNs)
ANNs are considered as predicting-analytical models that are used extensively in research fields. Some of them are
industrial risk management control activities, accidents’ consequences and severity, and data validation (19).
Moreover, they can be helpful in predicting the severity of complicated occupational accidents and injuries and
determining factors that affect such injuries (11-13). Multi-layer perceptron (MLP) is one of the well-known ANN
models that is composed of an input, an output, and, usually, one or more latent layers. Input-output data are used to
determine weights and biases while learning the MLP process (12, 13, 20). Additionally, the back-propagation
technique, which generates the input forward in a network and calculates the error backward in an iterative manner,
is used to obtain these parameters (13).

ANNs’ architecture mostly influences the accuracy of the structure. According to MLP’s hidden layer, different type
of structures can be defined. Moreover, there are several sources for determining optimized structures of MLP (21-
24). Besides, on the basis of MSE criterion, different models were compared. MSE = 1/n Ʃ(yi-ỹi)2, where MSE:
Mean Square Error, yi: Network output of ith data, ỹi: Desired output of ith data,and n: number of datasets. Also, “tan
sig(n)= 2/(1+exp(-2*n))-1” was used as the activation function. This is mathematically equal to tanh (N). Notably,
this function differs and runs faster than MATLAB implementation of tanh. Furthermore, the results can have small
discrepancies. Tansig(n) is a good and proper trade-off between neural networks where speed is important and the
exact shape of the transfer function is not. In addition, the Bayesian regularization learning function was used in
constructing the network. This learning function uses the Jacobian matrix, which assumes that performance is a
mean or sum of squared errors for calculations. As a result, trained networks with this function must use the MSE
performance function. Finally, in order to avoid overfitting in the learning data, the neural network was divided as
follows: 80% of the data were considered as the training set, and 20% were the test data; data classification in each
set was assigned randomly (25). In addition, we used MATLAB 2014a software to implement the ANN.

3. Results
ASR of occupational injuries was calculated as 557.47 ± 397.87. The descriptive findings of IFs, OFs, TFs, and
RMFs are shown in Table 1 and 2. The mean of age and work experience of injured workforces were 27.82 ± 5.23
and 4.39 ± 3.65 years, respectively. Higher than 70% of injured workforces were simple workers, and 24.2% were
technicians; and 17.6% of injuries occurred in maintenance activities. In addition, the findings showed that time
pressure was involved in 75% of occupational injuries; also 75% of the injuries occurred to the contractor
workforces. Quality and quantity of training were 25.0% and 26.3%, respectively. Hazard identification (HAZID),
periodic risk assessment, and accident investigation were estimated to be 18.6, 47.6, and 17.0%, respectively.
Furthermore, H&S control measures, including PPE, TBM, and housekeeping, were 27.8, 16.2, and 23.6%,
respectively. The findings of feature weighting by rough set theory are shown in Table 3. The results of applying
rough set by RSES shows that among the 25 studied factors, 13 factors, i.e., age, number of workers, quality of
training, HAZID, working experience, activity, housekeeping, accident investigation, past injury training, periodic
risk assessment, contractor, periodic training, PPE, and time pressure, had weights above zero and were used as
input factors in the implementation of the neural network. The results of ANN are presented in Figures 1-4. This
ANN included 13 factors as input, one hidden layer (containing 20 neurons), and one output layer (ASR) (Figure 1).
As mentioned earlier, the 13 output factors of feature weighting were considered as input factors of ANN. Figure 2
shows the MSE values versus learning epochs. The results showed that the lowest MSE was 0.0055, which indicates
that the designed ANN was able to predict the exact ASR value according to the input factors. In addition, this
finding confirmed the findings of feature weighting. Figure 3 shows the histogram of error between the actual value
(ASR) and the value predicted by ANN. As can be seen, the absolute minimum value was 0.0005,3 and, as it moves
away from the point, the value of the absolute error increases. As observed in Figure 4, the regression value (R) is a
measure of the correlation between actual output (ASR) and the predicted value by the ANN (R = 0.9465). This
significant result shows that the trained neural network was able to predict the value of ASR according to these13
factors.
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Table 1. Descriptive results of Individual Factors (IF) and Organizational Factors (OF)
Studied Factors Descriptive Values
Individual Factors (IF) Age (years) (M ± SD) 27.82 ± 5.23

Work Experience (M ± SD) 4.39 ± 3.65
Education Sub Diploma1 325 (33.2%)

Diploma 398 (40.6%)
Upper diploma 190 (19.4%)
Above B.Sc. 67 (6.8%)

Marital Status Single 481 (49.1%)
Married 499 (50.9%)

Organizational Factors (OF) Average of workers (M ± SD) 41.45 ± 22.99
Job Title Simple Workers 719 (73.4%)

Technicians 237 (24.2%)
Supervisor 24 (2.4%)

Activity Type Normal Work 641 (65.4%)
Installation 84 (8.6%)
Maintenance 172 (17.6%)
Material Handling 83 (8.5%)

Time Pressure 721 (73.6%)
Contractor 724 (73.9%)

1: Diploma: high school diploma

Table 2. Descriptive results of Training Factors (TF) and Risk Management Factors (RMF)
Studied Factors Descriptive Values
H&S Training Factors (TF) Pre-employment training 225 (23.0%)

Periodic Training 381 (38.9%)
Past Injury Training 135 (13.8%)
PPE Training 253 (25.8%)
Housekeeping Training 141 (14.4%)
quantity of Training 258 (26.3%)
Quality of Training 245 (25.0%)

H&S Risk Management
Factors (RMF)

HAZID 182 (18.6%)
Periodic risk assessment 466 (47.6%)
accident investigation 167 (17.0%)
Risk control measures; PPE 272 (27.8%)
TBM 159 (16.2%)
Housekeeping 231 (23.6%)
Checklist 809 (82.6%)
Incident Report 128 (13.1%)
H&S Audit 197 (20.1%)

Table 3. Results of feature weighting by rough set
Selected factors Factors Importance Selected factors Factors Importance
Age 100.0 Accident investigation 30.0
Number of workers 100.0 Past accident training 25.0
Quality of training 100.0 Periodic risk assessment 25.0
HAZID 80.0 Contractor 20.0
Working experience 75.0 Periodic training 15.0
Activity 75.0 PPE 5.0
Housekeeping 40.0 Time pressure 5.0
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Figure 1. Algorithm of ANN to predict ASR

Figure 2. MSE versus learning epochs

Figure 3. Error histogram
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Figure 4. Relationship Model of ANN and ASR

4. Discussion
The present study, which was aimed to ANN modeling of the severity of occupational injuries to determine the H&S
threatening factors, introduced a model to predict ASR for occupational injuries, and it was conducted based on
using a chain approach including rough set and ANN. The findings of part two confirmed the results of part one,
which implicated that ANN is an optimum technique for approximation function of occupational injuries’ severity
and other health problems in large-scale workplaces. Analysis and modeling of occupational injuries will result in
accurate perception of health threatening factors and can be used as predictive algorithms and to model injuries in
the future (11-13). Because of the great complexity of workplaces, analysis of occupational injuries using common
analytical methods is very difficult. The findings of part 1 and some studies have shown that applying artificial
neural networks (ANN) is proper and applicable to estimate injury factors (12, 13, 20). Carrillo-Castrillo et al.
indicated that artificial neural network is a most reliable and practical tool that can analyze and model severity rate
of occupational accidents and injuries (12). Also, Moghaddam et al. predicted highway crash severity using ANN
(13).

Consistent with results of some studies, the findings of the present study indicated that occupational injuries are one
of the most important threats to workforce’s health, and they are induced by the combination of several factors. The
results of both rough set and ANN indicated that the average age of workforce and work experience were individual
factors, and the organization factors included average number of workers in each activity, activity type, time
pressure, and using contractor workforce. Also, the quality of H&S training, periodic and past injury training as
training factors, and H&S risk management factors, including HAZID, periodic risk assessment, accident
investigation, risk control measures, such as using PPE and implementing housekeeping, were the most important
factors in causal analysis and in predicting occupational injuries and their severity (4, 26-28).

ANN modeling of ASR revealed that this technique is an effective and reliable tool for analyzing and modeling
health problems, such as occupational injuries. This modeling affirmed that the created and validated ANN model of
ASR is a valid solution approach in the analysis of the severity of occupational injuries. Thus, the findings can be
applied for predicting and preventing health-related problems. Additionally, in re-interpreting the results of this
modeling, it can be shown that with the 13-factors, ASR in the large-scale workplaces can be 94.651% predicted. In
other words, ASR modeling by ANN should be defined and developed to promote optimum performance of H&S
structures in the workplaces.
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The findings of this analytical study, which were presented in two parts, indicated that applying the chain approach
in analyzing and modeling occupational accidents and injuries as one of the most important threats to the health of
the workforces is a good and applicable method. Furthermore, this would lead to identification and determining
combinations of factors that affect the health and safety of the workforce in large-scale workplaces, and it is a proper
way to predict and reduce occupational injuries.

5. Conclusions
The findings affirmed that the chain analytical approach, including rough set theory and ANN modeling, is a good
and applicable method to analyze and model the factors affecting health of workforce and predicting severity of
occupational injuries. Furthermore, the results indicated that health threats, such as occupational injuries, are a result
of combination factors, including individual, organization, H&S training, and risk management factors. Therefore,
health decision makers should plan comprehensive health programs that focus on all of the mentioned factors.
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